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LONG ITUD INAL MASS- S PR ING MODEL I NG 
OF LAUNCH VEHICLES 

SUMMARY 

To determine longitudinal axisymmetric vibration modes of launch 
vehicles, gimplified models must be established. As,a first step, a launch 
vehicle can be idealized by a chain of masses, helical springs, and liquid-filled 
containers. However, the realistic mass-spring representation of the liquid 
propellants supported by the elastic container wall is the problem. In this 
report, application of Galerkin's method to the equations of motion of the above 
simplified system is proposed, using the container-liquid modes with special 
normalization factors as coordinate functions. This method, identical with the 
Ritz method in this case, is favorable in several aspects. First, the resulting 
model is based on the energy law. The use of the container-liquid modes, how­
ever, results in accurate representation of significant structural and inertial 
characteristics of the container-liquid system. The special normalization of 
the coordinate functions converts the container-liquid systems directly in 
Pumped parameter systems, having a number of degrees of freedom equal to 
the number of coordinate functions used. In this report, the containers are 
assumed cylindrical membranes with flat rigid bottoms. For simplicity, 
typical tandem parts of vehicles, consisting of only one or  two solid masses 
and springs and one liquid-filled container are examined. If one-term 
approaches are  considered, the resulting model can be interpreted as an actual 
spring-mass model. Because of the rapid decrease of the equivalent modal 
masses (with increasing mode number) , restriction to one-term approaches 
does not mean considerable loss of accuracy. Comparison of analytical results 
with experiments provides satisfactory agreement. In this way the use of large 
matrices in the final eigenvalue problem can be avoided. 

INTRODUCTION 

The rrPOGO''oscillations of launch vehicles are of primary interest. 
POGO oscillations result from a closed-loop interaction between one of the 
a x i s p m e t r i c  longitudinal vibration modes and the propellant system. Hence, 



the POGO problem has led to increased interest in the accurate determination 
of longitudinal axisymmetric modes and frequencies of vehicles. However, 
knowledge of the elastic and inertial characteristics of the structural components 
is required before the modes and frequencies can be calculated. Because of the 
complexity of launch vehicles , adequate simplified mass and stiffness models 
must be established for calculation of the desired modes. Usually only a few of 
the fundamental modes are of interest; thus, the structure can be idealized by 
taking only significant dynamic properties into account. In general, the 
representation of the solid masses is not as critical as that of the liquid pro­
pellants. From experience it is known that the solid masses can be lumped at 
certain points of the vehicle axis and that the elasticity of the structure can be 
idealized by helical springs between the mass points. In this way, the solid 
structure is simplified by a chain of springs and masses. The liquid masses 
inside the elastic container must be treated differently. The liquid propellant 
masses constitute a high percentage of the overall vehicle masses throughout 
much of the power flight and, coupled with the solid vehicle masses and springs, 
may generate the fundamental modes of the complete vehicle. Thus, the correct 
comprehension of the liquid behavior inside the elastic container is of extreme 
importance. There is, however , no direct way to .replace the liquid and @e 
elastic container wall  by l-ped--solid masses-and-springs. The proJblemLf 
interaction between liquid and-elastic container walL _aso--callgd hydroelastic. 
roblem , is governed by-the l_aws_ofJluid dynamics and elasticity, Its analytical 

formulation represents a boundary value problem. .To ensure properreprFien­~~ 

tation and clear ,understandipg_of the-liquid-contginer~ipteractiogs, thisproblem 
must be solved. 

Nevertheless, one feels intuitively that the liquid masses supported by 
the elastic walls act like spring-mass systems coupled to the solid vehicle 
structure. Thus, i t  is understandable that engineers like to simulate the dynamic 
behavior of the liquid inside the elastic tanks by single spring-mass systems. 
Models of this kind have existed for a long time. Some of them are described 
in publications [ 1-51. These models are based on the following assumptions: 

I. The equivalent vibrating solid mass equals or  can be larger [ 31 
than the total liquid mass. 

2. The liquid velocity field inside the tank, generated by the accelerated 
container motion, is neglected. 

3. Bending stresses and inertia of the wall are neglected. 
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In Appendix A a short description of these models is given, and their 
usefulness is shown by comparison with test results. 

Another kind of approach is presented in Archer [6] and Rubin [7]. 
Based on orthotropic shell theory, a finite element technique is utilized to 
construct the total launch vehicle stiffness and mass matrices by dividing the 
structure into ( misymmetric) shell components, fluid components, and spring-
mass components. The stiffness and mass matrices for the complete vehicle 
a r e  obtained by superposition of the stiffness and mass matrices of the individual 
components, which are computed using a Rayleigh-Ritz approach. 

This paper is concerned with the modal analysis of vehicles, based on 
spring-mass modeling. However, the method proposed is quite different from 
that noted at the beginning. Analysis and model a re  based on the equations of 
motion of the reduced vehicle, consisting of a chain of masses, springs, and 
liquid-filled containers. Application of Galerkin's method reduces these equa­
tions to a system of finite ordinary differential equations that can be interpreted 
as the equations of motion of a lumped parameter system, provided properly 
selected coordinate functions a r e  used. This is explained briefly in the following 
paragraph. 

The equations of motion contain a finite number of ordinary differential 
equations (describing the motion of the solid mass-spring system) and a number 
of partial differential equations governing the liquid-filled container. The latter 
represent distributed systems having infinite degrees of freedom. To replace 
these equations by a number of ordinary differential equations, Galerkin's 
technique using the vibration modes of the partially liquid-filled container as 
coordinate functions is applied. In doing so, one obtains a finite number of 
coupled ordinary differential equations for each container and, collectively, a 
finite number of equations of motion of the entire vehicle. These .equations can 
be written in matrix form displaying stiffness and mass matrix. In this way, 
the problem of free vibrations is reduced to a matrix eigenvalue problem. 

In the following sections it is shown that the container-liquid equations 
can be considered the equations of motion of lumped mass systems, provided 
the coordinate functions a r e  normalized by specific factors. If this is the case, 
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Galerkin's approach converts the container-liquid systems directly into equiva­
lent lumped mass systems, whereby the number of masses (degrees of freedom) 
equals the chosen number of coordinate functions. In this way, relations evolve 
between the masses of the solid structure and those masses representing the 
liquid. 

Galerkin's method using the container-liquid modes as coordinate 
functions is also favorable from other aspects. Galerkin's approach , identical 
with the Ritz method in this case, ensures proper adherence to the law of energy, 
while the use of the modes results in accurate representation of significant 
structural and inertial properties of the container-liquid systems. The entire 
vehicle is then represented by a lumped parameter model, established without 
any assumptions violating the laws of fluid dynamics and elasticity. 

Thus, studying this model, one obtains understanding of the vibration 
problem at hand. First, one recognizes that the resulting model, in general, 
does not represent an actual spring-mass model. If interpreted in this way it 
would display "springs" having negative constants. However , the point is, 
if one-term approaches are considered , the container-liquid models represent 
actual spring-mass systems which agree, as far as the arrangement of masses 
and springs are concerned, with the model mentioned at the beginning, although 
the amount of mass  and the spring constants are different. In this way, the 
entire vehicle is represented by a lumped spring-mass model. A s  shown 
below, the restriction to one-term approaches does not mean considerable loss 
in accuracy. One fact should be emphasized. To apply the approach suggested, 
the container-liquid modes must be known. This seems to be a disadvantage 
of the approach. However, in general, one cannot expect to be able handle 
the vibration problem of a complex structurewithout-being able-to hand@ the~~ 

vibration problems of its single parts. 

To realize the model outlined above, specialization of the coordinate 
functions by normalizing factors is necessary. This procedure is based on the 
well-known principle of "Mechanical Analogy. I f  From the vibration modes , 
simple mechanical one-degree-of-freedom systems can be derived that respond 
in the same fashion as the modes, having the same energy and producing the 
same support forces. In Graham and Rodriguez [8] and Schmitt [ 9 ,  101, this 
principle is applied to the lateral sloshing motion of liquid in a rigid container. 
Because of the special nature of this case, where the potential energy stems 
from the liquid surface elevation, a pendulum analogy results. Pozhalostin [ 111 
contains a discussion of this principle , based on the longitudinal vibrations of 
an elastic container partially filled with liquid. In all these cases, forced 
vibrations were  considered to derive the analog mechanical systems. 
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Thus, the single container-liquid modes must be studied. From the 
above remarks it can be concluded that any axisymmetric mode of vibration is 
equivalent to a single spring-mass system resting on the container bottom. The 
amount of mass and spring constant a r e  determk*edby the following require­
ments: potential and kinetic energy of the spring-mass system equal, at any 
time, those of the container-liquid system, vibrating in that particular mode. 
In addition, the resulting liquid pressure force on the container bottom and the 
force exerted there by the mechanical spring a re  equal. Consequently, the 
particular mode used must be normalized to correspond with the container 
geometry and liquid height. In the following section, the equivalent single 
spring-mass systems of the modes of a partially liquid-filled cylindrical 
membrane with flat, rigid bottom are derived. It is easy to confirm that the 
sum of all "modal masses" determined as outlined above is smaller than the 
total liquid mass. Furthermore, one realizes the rapid decrease of the modal 
masses with increasing mode number. 

Using these normalized modes as coordinate functions, the Galerkin 
approach can be performed. Because of the rapid decrease of the modal 
masses,  only a few degrees of freedom must be added to obtain a realistic 
model of the container-liquid system. In this way, the use of large matrices 
in the final eig6nvalue problem can be avoided. In the third section, the equa­
tions of motion of typical tandem parts of vehicles consisting of solid masses, 
springs, and a partially liquid-filled cylindrical membrane a re  derived. In the 
following sections, Galerkin's method is applied to two of these cases: partially 
liquid-filled cylindrical ,membrane.with a top mass; partially liquid-filled 
membrane resting on a single spring-mass system. Two special cases were 
numerically solved and compared with test-results performed by Southwest 
Research Institute, San Antonio, Texas, under Contracts NAS8-I 1045 and 
NAS8-20329. A s  seen in the last two sections, the agreement is satisfactory. 
The solutions of these special cases render possible the spring-mass modeling 
of any chain of solid springs and masses and liquid-filled cylindrical membranes. 

EQUIVALENT SINGLE SPRING-MASS MODELS 
OF THE V I  BRAT ION MODES 

The axisymmetric free vibrations of partially liquid-filled cylindrical 
membranes with flat, rigid bottoms are considered. The membrane is referred 
to a cylindrical system of coordinates r, 8 ,  z ( Fig. la). 
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a) 	 Coordinate System; Displacements b) Equivalent Single Spring-

Mass  System of the jth Mode, 

FIGURE I.PARTIALLY LIQUID-FILLED CYLINDRICAL MEMBRANE 

The following assumptions are made: 

I. The wall  inertia is neglected. 

2. The membrane is free at the top. 

3. The liquid is considered inviscid and the flow irrotational. 

4, The pressure created by the surface wave is neglected. 

From assumptions i and 2, the equation of motion of the membrane 
[13-15] follows as 

From assumption 3, it follows that the liquid velocity inside the tank can 
be derived from a potential +( r, z, t) , which is the solution of Laplace equation, 
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The liquid pressure caused by the velocity potential is then given by 

Theboundaryconditions a re  

z = o  , 	 ??st = o  
az 

Condition ( 6 )  follows from assumption 4 and equation ( 3 ) .  

A s  well-known [ 14, 151 , equation ( 2) and the boundary conditions ( 4) 
through ( 6) represent a boundary value problem with the following solution: 

( Proof by substitution. ) The quantity h.( t) has the dimension of a velocity
J 

and is determined by initial conditions. The dimensionless constant, c wil l  
j’

be determined in the following. According to equations ( 3) and (7) the liquid 
pressure created by +.(r,‘z, t) follows as 

J 

p . ( ry  z, t) = -p 
a$.(r ,  Z ,  t) 

= -ps j ( t )  3j(r,z) ( 8)a t
J 

It can be concluded easily that the solution (7) fulfills boundary conditions ( 4) 
and ( 6 ) .  
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From boundary condition (5) and equation (7)  the radial membrane 
displacement follows as 

w . (z ,  t) = a.(t) W.(z)
3 J J i 

- a$.(R, z) 
W . ( d  	= a rJ 

j =  i ,  2, 3, ... 
Substitution of equations ( 7 )  , ( 8) ,  and ( 9) into equation ( 1) yields 

o r  

E6-
R3P 


thEquations ( 7) , ( 9) , and ( 11) represent the j solution of the eigenvalue 
problem at hand: the free vibration of the partially liquid-filled cylindrical 
membrane having a flat, rigid bottom. Since the problem is homogeneous , the 
solution is determined only up to the constant factor c. as shown by equations 

th7) and ( 9) .  A s  noted in the introduction, the j vibration mode is equivalent 
to a single spring-mass system resting on the container bottom and having, at 
any time, the same kinetic energy, potential energy, and reaction force on the 
container bottom. From the latter three conditions, the amount of mass and 
the spring constant of the mass-spring system and the modal factor c .  can be 
determined. 3 

Next, the law of conservation of energy of the liquid-filled membrane, 

vibrating in the j
th mode, is examined. Multiplication of equation ( 10) by 

aw.( z ,  t)/at (given by equation ( 9) ) integration over the wetted membrane wall
J 

and over a certain time interval gives 

h h 
- p  
2Rn 6 . (R ,  z) w.(z) A ? +  

2 R2,, [W.(z)I2dza? = const. ( 12) 
O J J J J J 
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Equation ( 12) expresses the law of conservation of energy of the system 

membrane-liquid, vibrating in the j th mode. It can also be assumed to be the 
energy law of a single spring-mass system having the mass 

and the spring constant 

The equation of moQon of the single spring mass system (Fig. ib) follows then 
from equations ( 12) 'through ( 14) as 

m. 5. + k. a. = 0
J J J J 

Because it is assumed that the spring of this system rests on the container 
bottom and that the spring force equals the force exerted there by the liquid, it 
follows 

R 
-k ja j  = p.(r ,o,  t ) r d r

0 '  

or, under consideration of equations 

R 


Thus, from equations ( 13) and ( 16) one obtains 

2 i 
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k. = 
2R1r E6 

; j = 1, 2, 3, ...
J h 

Equations (15) ,  (20)  and (21) define completely the equivalent single 
thspring-mass system of the j vibration mode. From equations.(20) and ( 21) 

also follows the circular frequency as given by equation ( ii). 
To determine the spring-mass model numerically, the function, 

must be evaluated. A s  shown in Appendix A, continued fractions and asymptotic 
expansions prove to be useful for that purpose. 

Figure 2 is the modal mass ratio (20) , 

mi
J-, j = i ,  2 ,  3 , 

m,T 

i o  



--- 
-- 

- 1 1 - 7 ­
0 * 9 \ 7 - l  i I -7----­--I 


I 
, I I 


Oe2/ - - ~ 


O.OSOi-+. ,' I 

, 

-. .-----..-­

0.0324 L----=----, -j = 2  

j = 3 - - --. I 
I I 


I I I 1 I 1 


FIGURE 2. MODAL MASS RATIO m./mT VERSUS h/R
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versus h/R. It manifests the importance of the first mass mi and the rapid 
decrease of the higher modal masses. 

From equation (A-I) , it follows 

lim R R Y 

h- 00 A - I o ( A  - )
j h  j h  

whereby the limes 1/2 also represents the maximum value. Thus, from equation 
( 20) it can be concluded 

m- 8lim sup iL = 
( 2j - i)2 7r2 Ym T 

m ihence lim sup -= 0. 8106 mT 

lim sup E L  = 0.0901 
m, 

The above values, also in Figure 2, demonstrate again the degree of 
significance of the single modal masses. 

A point of primary interest may now be touched upon. The amount of the 
th modal mass is given by equation ( 20). From this equation and the thirdj 

equation (7)  , the sum of all modal masses follows as 

Now, the question ar ises  whether 
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From equations ( 23) and ( 24) it follows ( [ 161 , p. 808) 

co m 

Because 1/2 represents the maximum value of the function in equation ( 23) , 
which never can be reached, one concludes 

m . < m T  
j = i  J 

The following integrals should be mentioned for later use: 

h 
2 R ~ p  ( h - z )  W.(z)dz = - m  

j0 J 

where w.(z) and m. a r e  given by equations ( 19) and ( 20)
J J 

EQUATIONS OF MOTION OF TYPICAL TANDEM PARTS 
OF VEH ICLES 

Figure 3 shows a tandem part of a vehicle consisting of two solid masses,  
springs, and a partially liquid-filled cylindrical membrane. 

To obtain the equations of motion, the system shall be divided into sub­
systems for which the equations'of dynamic equilibrium can easily be set up. 

13 




fa3

faL 


a) TANDEM PART OF A VEHICLE b) EQUIVALENT LUMPED PARAM-
CONSISTING OF TWO SOLID ETER SYSTEM. 
MASSES, TWO SPRINGS, AND A 
PARTIALLY LIQUID-FILLED 
CONTAINER. 

FIGURE 3. 

In doing so, the membrane is crossed perpendicular to the axis somewhere 
between the masses Mi, Mz. The equilibrium conditions of the lower and upper 
part  are given by 

R 
Mi21 + K i x i  - 2R7rNZ + 27r 1 p ( r ,  0,t) r d r  = 0 ( 27) 

0 

where 
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If the wall inertia is neglected (assumption i), the equilibrium condition of a 
membrane ring element one inch high is given by 

N = [  R * ~ ( R zt) O S z < h  
( 29)e 0 h S z s l  

The membrane forces Nz, Ne can be replaced by the displacements [ I31 
as follows: \ 

NZ =.(E+ v")R 

Substitution of equation ( 30) into equations ( 27) through ( 29) results in the 
three equations of motion containing the four unknown quantities u, w ,  xi, x2. 

To reduce the number of unknowns, u shall be eliminated. Starting from 
equation ( 30),  the displacements can be expressed as  follows: 

Taking into account'the independence of N on z in ( 0 ,  z> ,as indicated by
Z 

equations ( 27) and ( 28) , and the fact that Ne = 0 in <h, 1> , one obtains from 

equations (31),by integration over the intervals <os 1> and (., h) , 
respectively, 

h 
E6(x2 - xi) = lNZ - v Nedz 

0 
h h 

E6 12dz = -vhNZ + JNodz 9 

0 0 
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and finally 

h 
Wk0 (x2 - x i +  Y E dz)

N Z = 2 R n  0 

2R7-i E6
k =  h0 1 ( l - Y 2  i' 

From equations ( 27) through ( 29) , ( 31) ( sec  nd equati n) ,and ( 3 2 ) ,  the 
equations of motion (now independent of u) follows as 

h R \ 
W(Ki+ko) xi-vko s -R dz - - 2n s p( r ,  0,t ) r d r  

0 0 

h 
W

-vk,,xl+2R7-iE6 -+v2ko s W dz-t-vkoxz=2R2.rrp(R,Z ,  t) ( 33)R 0 

h 
W-koxi+vkO E d z  + (K2+ko)x;!= -M2& Y 

0 

where 

x i = x i ( t ) ;  ~ 2 = ~ 2 ( t ); w = w ( z , ~ ); O S z s h  

Under assumptions 3 and 4 of the preceding section, the liquid flow is 
governed by a velocity potential @ ( r , z ,t) . In accordance with equation ( 3) , the 
pressure can be expressed by 

To solve equation ( 33) by Galerkin's approach, using the container-
liquid modes of the preceding section, one has to assume, in accordance with 
equations ( 3) , ( 7) through ( 9) , ( 9 )  
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I 
( 35)

n 

i 
where $.(r,z, t) and w.(z) are given by equations (18) and (19) .  Then the 

J J 
well-known procedure can  be performed.

L 


Before Galerkin’s method is applied to  the sys tem of equations ( 3 3 ) ,  two 
s imple r  sys t ems  will  be examined. 

i) Figure 4 is a cylindrical  membrane  par t ia l ly  filled with liquid and 
fixed on the lower end having a top mass. 

I 

I 

a) 	 PARTIALLY LIQUID-FILLED b) EQUIVALENT LUMPED PARAM-
CYLINDRICAL MEMBRANE ETER SYSTEM 
HAVING A T O P  MASS 

FIGURE 4. 
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The equations of motion follow from the second and third equations ( 33) 
by setting 

x i  = 0 
( 36) 

K2= 0 .i 

From equations ( 34) and ( 36) , it follows 

p ( r ,  z, t) = - p  
a $(r,z, t) 

( 38)a t  

2) Figure 5 is a partially liquid-filled cylindrical membrane resting 
on a single spring mass system. 

The equations of motion follow from the system of equation (33)  by 
setting 

One obtains 

Ed  W 
= Rp(R,.z, t) 

The liquid pressure is given by equation ( 34). 

18 




‘ I 7 - l  
I I

I. 
t 1x’ 

a) 	 PARTIALLY LIQUID-FILLED b) EQUIVALENT LUMPED SPRING-
CYLINDRICAL MEMBUNE MASS SYSTEM 
RESTING ON A SINGLE SPRING-
MASS SYSTEM 

FIGURE 5. 

Equation ( 39) expresses the fact that the upper end of the membrane is 
free. Thus, no axial membrane forces are acting during vibration of the 
system. Consequently, equations ( 40) do not contain any terms stemming 
from Poisson effects. 

In the following, Galerkin’s method using the coordinate functions 
of equations ( 18) and ( 19) will be applied in equations ( 33) .  From the result­
ing linear system of ordinary differential equations, which represent the 
dynamic equilibrium conditions of the mass points involved, the lumped mass-
spring model sketched by Figure 3b will be derived. 

Equations ( 34) and ( 35) must be substituted into equations ( 33) , and 
the specified integrations must be camied out. Then the second equation ( 33) 
must be multiplied by %.( z) , ( i = I ,  2 .. n) and integrated over <o, h> ;

1 
whereby equations ( 13) , ( 14) , ( 16) , ( 25) , and ( 26) must be taken into account. 
Diagonalizing of the mass matrix requires simple intermediate operations, 
which are not shown. One obtains finally 
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0 0 

m1 0 

+ 

m 

0 0 . .  

where 

k. j = i ,  2 . . .  n 

20 




and 

are given by equations ( 20) , ( 21) , ( 25) , and ( 32) .  

Furthermore, 

n 

Because the mass matrix of equation (41) is diagonal, any of the 
equations represents the dynamic equilibrium condition of the particular point 
mass  appearing in'that equation. The stiffness matrix contains no zero element; 
thus, one concludes that all masses a r e  connected with one another by springs. 
Figure 3b is a spring-mass system having such an arrangement of masses and 
springs. Massless rigid bars  drawn in Figure 3b serve for connection of all 
masses with one another by the vertical springs. The stiffness matrix of this 
system can easily. be determined as 

.K( n) 



Comparison of the elements of this matrix with those of the stiffness 
matrix of equation (41) results in a system of linear equations having the 
unique solution . 

i , j  = 1, 2, ...n 1 
From these equations it can be seen that the "spring" constants K(j)and 

K.. a re  negative if j and i+j respectively, are even numbers. The "springs"
4 

referring to these constants a r e  dotted in Figure 3b. Consequently, the lumped 
system of Figure 3b represents an actual spring-mass system only if j = I 
( one-term Galerkin approach). Because of the predominance of the first modal 
mass ,  restriction to the one-term approach will  be sufficient in most cases. 

A s  already mentioned, the arrangement of masses and springs resulting 
from the one-term Galerkin approach is the same as that of Wood's model, 
(Appendix B) . Of course the amount of the equivalent liquid mass and the 
spring constant differ considerr?bly. 

PARTIALLY LIQUID-FILLED CYLINDRICAL MEMBRANE 
HAVING A MASS ON TOP 

a 

The free vibrations of this system, shown in Figure 4a, are governed 
by equations ( 37) and ( 38). A s  in the previous case, application of Galerkin's 
method results in a system of ordinary differential equations of motion having 
stiffness and mass matrix as 
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M2 0 0 

0 mi 0 

0 0 m2 

0 0 0 m n 

This result can also be obtained directly from equations ( 36) and ( 41). 
The equivalent lumped parameter system is represented by Figure 4b. 

Because of the sharp decrease of the higher modal masses, a s  shown 
in Figure 2, their coupling effect is small. Thus, if higher modes of the 
coupled system are  not asked for, consideration of only the first modal mass 
will, in many cases, result in sufficient accuracy. Then equations ( 41) reduce 
to the simple system 

having a quadratic frequency equation. From equations (42) and ( 43), the 
spring constants of this model follow as 
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where ki, K ~ ,and ko are given by equations ( 21) , ( 25) , and ( 32). Equation ( 20) 
gives mi. 

To prove the accuracy of the one-term approach, analytical and experi­
mental results using a stainless steel container with three different top masses 
M2 (weight W) were compared. The results are shown in Figures 6 through 8. 
The agreement is satisfactory. 

PARTIALLY LIQUI D-FILLED MEMBRANE RESTING 
ON A SINGLE SPR ING-MASS SYSTEM 

Figure 5a is the vibrating system which is governed by equations (31) 
and (40 ) .  The linear system of ordinary differential equations of motion 
follows by application of Galerkin's technique, or  it can be concluded directly 
from equations ( 39) and ( 41). In the latter case, one has to consider that all 
terms containing v vanish. 

Stiffness and mass matrix follow as  

0 . . . .  0 

k2 . . . .  0 -k2 

0 . . . .  k n -k n 

-k . . . .  - k  n n 

-
0 0 

m2 0 0 

O m 0 n 

0 0 M i + mT - t m 
jj = l  ­

..... .. . 
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FIGURE 6. NATURAL FREQUENCIES O F  PARTIALLY FILLED TANK WITH 
T O P  MASS W = li.48 lb (51.066 N) 
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where m. and k.(j = i, 2, ... n) a re  given by equations ( 20) and ( 21).
J J 

Because all Poisson terms a r e  zero, it follows from equations (42) and 
( 43) 

In this case,  no "springs" with negative constants exist. Consequently, 
the equivalent system is an actual spring-mass system for all values of n. It 
is represented by Figure 5b. 

Because the configuration of the nonzero elements of the stiffness matrix 
is relatively simple, the frequency equation can be set up immediately. For a 
one-term and a two-term approach these equations a re  

2 2A2 - 1.' + w;(i +?)I A + wo wi= 0 

where 

w 2  -iK 
0 - M  

n 
-M = M ~ + ~C m. , n = i ,  2 

46) 

t j = l  J 

and 

A = (27rf) ( 47) 

28 




Table I is the test and analysis results from a one-term and a two-term 
approach at different filling heights. The first frequency resulting from the one-
term approach is already as good as that of the two-term approach. Test values 
of the third frequency could be obtained for the highest levels only. This fact is 
not surprising, however, in view of the smallness of the second modal mass. 
The container used is a ring-stiffened Mylar cylinder with rigid bottom. The 
effective modulus of elasticity was  determined by use of a correction factor as 
outlined in [ 121. 

CONCLUS IONS 

Longitudinal spring-mass models of launch vehicles can be obtained 
by application of Galerkin's technique. A s  a first step, the vehicle can be 
idealized by lumping its solid masses and (longitudinal) springs to a chain of 
lumped masses , springs, and liquid-filled containers. The equations of motion 
of this vehicle model consist, then, of a number of ordinary differential equations 
describing the motion of the solid point masses, coupled with partial differential 
equations governing the liquid motion inside the container. Application of 
Galerkin's technique using the container-liquid modes with special normalization 
factors reduces this system of equations to the equations of motion of a finite 
degree of a freedom-lumped parameter system. 

In this report , the containers are assumed cylindrical membranes 
with flat, rigid bottoms. For simplicity, typical tandem parts of vehicles 
consisting of only one or two solid masses, springs, and one liquid-filled 
container are examined. From the analysis the following can be concluded: 

1. The lumped parameter systems resulting from one-term approaches 
can be interpreted as actual spring-mass systems. Thereby the container-
liquid system is replaced by one modal mass and three helical springs ( Figs. 
6 through 8). Spring constants and modal mass are given by equations ( 20) , 
( 21) , ( 25) , ( 32) , and ( 45). Because of the rapid decrease of the equivalent 
modal masses, no considerable loss of accuracy results from one-term 
approaches. This'behavior is proven by comparison of analytical results with 
experiments (Figs. 6 through 8, Table 1). 

2. If approaches with more than one term are performed, the resulting 
lumped parameter system can no longer be considered an actual spring-mass 
model. In this case, the spring-mass arrangement that replaces the container-
liquid subsystem exhibits "springs" with negative constants descending from 
Poisson effects. These springs are sketched with dotted lines in Figures 3 and 
4. Spring constants and modal masses are given by equations ( 20) , ( 21) , ( 25) , 
(321,  (421,  a n d ( 4 3 ) .  
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TABLE I. NATURAL FREQUENCIES OF A PARTIALLY LIQUID-FILLED 
MYLAR CONTAINER RESTING ON A SINGLE SPRING-MASS SYSTEM. 

ONE-TERM APPROACH; TWO-TERM APPROACH; TEST VALUES. 

1 = 11.2 in. (28.45 Cm) K = 11. 62 -lh 
(2. 035 X 106 -m )

in. 

R = 4.5 in. (11.43 cm) W = 4.67 lh  (20.773 N) 

lh Nlb sec' 103 .!.% , Eef f6  = 5050 - (884390 - )= 9 . 3 5 9 ~io5 in. m3 in.  m 

I I 
- 0 - R - 0 -

I 

M, + mT - mlmsr
A one-term appi oach model two-term appi oach model 

- .. ~ . 

f2 f3  
h 

1-Term 1-Term 2-Ter m  Test [ -Term 2-Term 
_I 

t i .  1 42. 5 42. 5 43.1 131.8 115.4 116.0 173. 9 

LO. 1 45. 6 45. 6 46.2 136.6 122.3 122.0 180.7 

9. 1 49. 2 49. 2 49. 6 142. 1 129.8 129.0 188.7 

8. 1 53. 4 53. 4 53.9 148.4 138.3 136.0 198.2 

7. 1 58. 4 58. 3 58.7 154.5 147.0 140.0 209.4 

6. 1. 64. 2 64. 2 64. 5 164.0 158.4 144.0 224.6 

5. 1 71. 2 71.7 71.7 175.0 171.6 164.0 244.6 

4. 1 80. 2 80. 1 80. 5 188.0 186.0 181.0 271.7 

3. 1 91. 3 91.2 91.0 206.8 205.9 196.0 312.7 

2. i 105.6 105.5 104.0 238.3 238.0 213.0 392.0 

i. i 143.3 124.5 122.0 314.3 313.0 - 538.0-
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Although this paper deals only with cylindrical membranes having a flat, 
rigid bottom, the method outlined can be extended to general axisymmetric 
membrane or shell containers, provided the container-liquid modes a re  known. 
In reality, many tanks consist of long cylindrical parts and spherical or elliptical 
ends. During much of the power flight t h e ,  even if the propellant masses are 
still large, the container-liquid system will behave like a liquid-filled cylinder 
with a flat, rigid bottom. Certainly an elliptical or  spherical end represents a 
disturbance of the liquid flow, and its influence must be investigated. However, 
this is only one of many other disturbances present in the container-liquid sys­
tem. Especially the behavior of tanks stiffened by rings and stringers, and also 
the influence of anti-slosh devices, must be studied. For cylindrical tanks with 
stiffening rings only, a correction factor of Young's modulus can be derived so 
that the ring-stiffened wall  is approximated by a wall of uniform thickness having 
a slightly greater modulus of elasticity [ 121. 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Marshall Space Flight Center, Alabama 35812, December I O ,  1968 
124-08-05- 00-62 
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APPENDIX A 

NUMER lCAL EVALUATION OF I ~ (x ) /~o(x )  

In the section on equivalent spring-mass model of vibration modes, 
normalized modes and equivalent masses and springs are represented in terms 
of Ii( x)/Io(x). For numerical evaluation, useful expressions of this function 
should be considered. 

For argument values 

x <  i o  

a continued fraction representation proves to be convenient. In [ 161 the follow­
ing expansion is given: 

where Jo(F;) and J&5 )  are the Bessel functions of orders 0 and Iof the first 
kind. 

the above continued fraction transforms into 

( 161 p. 375 9. 6. 3) 
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For argument values 

x )  10 


asymptotic expansions of the modified Bessel functions can be used [ 161. 


h 

I..i o  ..L 

FIGURE A-I. Ii(x)& (x) AND I, (x)/x& (x) VERSUS x 
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APPENDIX B 

WOOD'S MODEL 

Figure B-i is Wood's model of a cylindrical tank with top mass and 
rigid bottom. A s  already mentioned, the arrangement of springs and masses 
agrees with that of a one-term Galerkin approach, while the moun t  of equiva­
lent mass and the spring constants are different. There is, however, no unique 
interpretation of Wood's model. In addition to the original model, two modifi­
cations can be found in the literature on the subject. Spring constants and 
equivalent masses of these models, designated by W,, W2, and W,, a re  gathered 
in Table B-I. Wood's model is not restricted to cylindrical tanks with rigid 
bottoms. Versions for tanks with flexible bulkheads and tanks stiffened by rings 
and stringers also exist I ,  41. 

Obviously, important structural and inertial properties of the container-
liquid system cannot be represented by simple models of this kind. There are, 
however, some other weaknesses of these models. Consider for instance the 
spTing constants of the models Wl and W,. If h goes to zero, all three spring 

constants K ( J ) i  ( j  = 1 , 2 , 3 )  go to infinite, thus both frequencies of the models 
W 

go to infinite. This behavior is not in agreement with test results, as shown by 
Figures 6 through 8. Now consider the model W2. If M vanishes, the container-
liquid frequency, cietermined by Kw(l) and ml, goes to zero if the container 

length 1 goes to infinite. This is, however, inconsistent with theory 

and experience. 

In Figures 6 through 8, analytical results obtained by application of 
Wood's model W2 are also presented and can be compared with experimental 
results. 
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a) PARTIALLY LIQUID FILLED b) WOOD'S MODEL 
CYLINDRICAL TANK WITH T O P  
MASS 

FIGURE B-I. 

TABLE B-I. SPRING CONSTANTS AND MASS OF WOOD'S MODEL 

Original Moc 

W i  

2v 
3-2v2 kw 
3 - 2 ~  
3-2vz  kw 
2Rn E6 

h 

R2n hp 

[ i l  [2]  

-~~ 

Modified Models 

w2 

3v 
4-3v2 % 
4 - 3v 
4 - 3 9  % 
2Rn E6 

1 

t 31 

w3 

3v 
4 - 3 9  %v 

4- 3v 
4 - 3 9  %I 

2R7r E6 
h 

R2n ph 

[ 51 
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